` Selva: Publications
Selva Nadarajah [selvan@uic.edu]

The convergence of artificial intelligence, energy systems, and sustainability presents unprecedented opportunities and challenges for society. My research addresses a fundamental question: How can organizations make better decisions about energy investments and operations in an uncertain and resource-constrained world? At the core of my work is the development of computational methods that automate complex decision-making processes, making sophisticated optimization tools accessible to practitioners while advancing the theoretical foundations of the field.

My research program operates at the intersection of large-scale computing and energy. I develop self-adapting approximations of Markov Decision Processes (MDPs), which are the foundational models underpinning reinforcement learning. These methods automate critical steps in model selection and solution guidance. They have been applied to manage production and storage energy real options, and to tackle emerging procurement and generation/transmission capacity problems.

Research Overview
Research Overview: Large Scale Computing and Energy
Working Papers
  1. Back to the future: Revisiting a pioneering approximation of average cost Markov decision processes using a multi-shot perspective (with P. Pakiman). [pdf; Under review at Operations Research]

  2. Hierarchical planning for hydropower capacity upgrade: Exploiting structure in reoptimization and investment policies (with A. Kleiven and S. E. Fleten). [pdf]

  3. A parameter-free and projection-free restarting level set method for adaptive constrained convex optimization under the error bound condition. (with Q. Lin, R. Ma, and N. Soheili). [pdf; Under review at Journal of Machine Learning Research]

  4. Self-adapting robustness in demand learning. (with B. Chen, P. Pakiman, S. Jasin). [pdf; Under revision for resubmission to MS&OM]

Accepted/Published Journal Papers
  1. Decision-centered decarbonization: Empowering scalable and community-led pathways to close emissions gaps. [pdf; Invited article accepted as part of Pathways to Sustainability: Collaborative Solutions for a Resilient Future; Editors: President Tim Killeen, Don Wuebbles, and Jason lane]

  2. Decision intelligence for healthcare decarbonization (with Sylvia Dziemian). [pdf; Forthcoming at Foundations and Trends in Technology, Information and Operations Management]

  3. Physical vs. virtual corporate power purchase agreements: Meeting renewable targets amid demand and price uncertainty. (with D. Mohseni Taheri, A. Trivella). [pdf; Forthcoming at European Journal of Operational Research]

  4. Self-guided approximate linear programs: Randomized multi-shot approximation of discounted Markov decision processes. (with P. Pakiman, N. Soheili, Q. Lin), Forthcoming at Management Science. [pdf]

  5. Self-adapting network relaxations for weakly coupled Markov decision processes. (with A. Cire), Forthcoming at Management Science. [pdf; video]

  6. Corporate renewable procurement analytics. Foundations and Trends in Technology, Information and Operations Management, 16 (3-4), 2023. [pdf]

  7. Least squares Monte Carlo and pathwise optimization for merchant energy production. (with B. Yang, N. Secomandi), Forthcoming in Operations Research, 2023. [pdf]

  8. Deep reinforcement learning with planning guardrails for building energy demand response. (with D. Jang, L. Spangher, C. Spanos), Energy and AI, 11, 2023. [pdf]

  9. A review of the operations literature on real options in energy. (with N. Secomandi), European Journal of Operational Research, 309 (2), 2023. [pdf; xlsx table]

  10. Meeting corporate renewable power targets. (with A. Trivella, D. Mohseni-Taheri), Management Science, 69 (1), 2023. [pdf; video; Received the 2021 Commodity and Energy Markets Association Best Paper Award and the 2020 INFORMS ENRE Young Researcher Prize]

  11. Data-driven storage operations: Cross-commodity backtest and structured policies. (with C. Mandl, S. Minner, N. Gavirneni), Production and Operations Management, 31(6), 2022. [pdf]

  12. Socially responsible merchant operations: Comparison of shutdown-averse CVaR and anticipated regret policies. (with A. Trivella). Operations Research Letters, 49(4), 2021. [pdf]

  13. Managing shutdown decisions in merchant commodity and energy production: A social commerce perspective (with A. Trivella, S.E. Fleten, D. Mazieres, D. Pisinger). Manufacturing and Service Operations Management, 23 (2), 2021. [pdf]

  14. A data efficient and feasible level set method for stochastic convex optimization with expectation constraints. (with Q. Lin, N. Soheili, T. Yang). Journal of Machine Learning Research, 21(143), 2020. [pdf]

  15. Network-based approximate linear programming for discrete optimization (with A. Cire). Operations Research, 68(6), 2020. [pdf]

  16. Partial hyperplane activation for generalized intersection cuts (with A. Kazachkov, E. Balas, and F. Margot). Mathematical Programming Computation, 12, 2020. [pdf; Received the Tepper Egon Balas PhD student paper award]

  17. Revisiting approximate linear programming: Constraint-violation learning with applications to inventory control and energy storage (with Q. Lin and N. Soheili). Management Science, 66(4), 2020. [pdf]

  18. Least squares Monte Carlo and approximate linear programming: Error bounds and energy real option application (with N. Secomandi). Advances in supply chain finance and FinTech innovations, Foundations and Trends in Technology, Information and Operations Management, 14 (1-2), 2020. [pdf]

  19. Merchant energy trading in a network (with N. Secomandi). Operations Research, 66(5), 2018. [pdf]

  20. A level-set method for convex optimization with a feasible solution path (with Q. Lin and N. Soheili). SIAM Journal on Optimization, 28(4), 2018. [pdf]

  21. Relationship between least squares Monte Carlo and approximate linear programming (with N. Secomandi). Operations Research Letters, 45(5), 2017. [pdf]

  22. Comparison of least squares Monte Carlo methods with applications to energy real options (with F. Margot and N. Secomandi). European Journal of Operational Research, 256(1), 2017. [pdf]

  23. Relaxations of approximate linear programs for the real option management of commodity storage (with F. Margot and N. Secomandi). Management Science, 61(12), 2015. [pdf]

  24. Less-Than-Truckload carrier collaboration problem: modeling framework and solution approach (with J. H. Bookbinder). Journal of Heuristics, 19(6), 2013. [pdf]

Conference Proceedings and Workshop Papers
  1. Offline-online reinforcement learning for energy pricing in office demand response: Lowering energy and data costs (with D. Jang, L. Spangher, T. Srivistava, M. Khattar, U. Agwan, and C. Spanos). Proceedings of the 8th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation (BuildSys '21), 2021. [pdf]

  2. A machine learning approach to methane emmisions mitigation in the oil and gas industry (with Jiayang Wang, Jingfan Wang, and P. Ravikumar). Tackling climate change with machine learning workshop, NeurIPS 2020. [pdf; Selected for a Spot Light Talk and Overall Best Paper. Research covered by Fortune magazine in its Eye on A.I. newsletter.]

  3. Self-guided approximate linear programs (with P. Pakiman, N. Soheili, and Q. Lin). Self-supervised learning workshop, NeurIPS 2020. [pdf]

  4. Interpretable user models via decision-rule Gaussian processes. (with D. Mohseni-Taheri, T. Tulabandhula). Advances in Approximate Bayesian Inference workshop, NeurIPS 2019. [pdf]

  5. Robust demand learning. (with B. Chen, S. Jasin). Workshop on Safety and Robustness in Decision Making, NuerIPS 2019.

  6. SMOILE: Shopper marketing optimization and inverse learning engine. (with A. Chenreddy, P. Pakiman, R. Chandrasekaran, R. Abens). Proceedings of the 25th ACM SIGKDD conference on knowledge discovery and data mining, Anchorage, Alaska, 2019. (accepted for oral presentation; acceptance rate 6.4%) [pdf]

  7. A three-echelon integrated production-distribution system (with J. H. Bookbinder). International Conference on Decision Sciences and Technology for Globalization, Decision Sciences Institute, Ghaziabad, India. 2008.

  8. Enhancing transportation efficiencies through carrier collaboration (with J. H. Bookbinder). BPC World Conference , Mumbai, India. 2007.

  9. Non-destructive evaluation by low pulsing acoustic tap technique: Spectral relationships (with T.S. Niranjan and A.V.Varun). Flight 2006, National Aerospace Symposium, Chennai, India. 2006.

Book Chapters
  1. Real option management of hydrocarbon cracking operations (with N. Secomandi, G. Sowers, and J. Wassick). Real Options in Energy and Commodity Markets, World Scientici-Now Publishers, 2017. [pdf]

Technical Reports
  1. Least squares Monte Carlo and approximate linear programming: Error bounds and energy real option application (with N. Secomandi). [pdf; extended version of the conference proceedings with the same title.

  2. Dynamic pricing for hotel rooms when customers request multiple-day stays (with Y. F. Lim, Q. Ding). [pdf]